首页> 外文OA文献 >Mining Event Logs to Support Workflow Resource Allocation
【2h】

Mining Event Logs to Support Workflow Resource Allocation

机译:挖掘事件日志以支持工作流资源分配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Workflow technology is widely used to facilitate the business process inenterprise information systems (EIS), and it has the potential to reduce designtime, enhance product quality and decrease product cost. However, significantlimitations still exist: as an important task in the context of workflow, manypresent resource allocation operations are still performed manually, which aretime-consuming. This paper presents a data mining approach to address theresource allocation problem (RAP) and improve the productivity of workflowresource management. Specifically, an Apriori-like algorithm is used to findthe frequent patterns from the event log, and association rules are generatedaccording to predefined resource allocation constraints. Subsequently, acorrelation measure named lift is utilized to annotate the negativelycorrelated resource allocation rules for resource reservation. Finally, therules are ranked using the confidence measures as resource allocation rules.Comparative experiments are performed using C4.5, SVM, ID3, Na\"ive Bayes andthe presented approach, and the results show that the presented approach iseffective in both accuracy and candidate resource recommendations.
机译:工作流技术被广泛用于促进企业信息系统(EIS)的业务流程,它具有减少设计时间,提高产品质量和降低产品成本的潜力。但是,仍然存在重大局限性:作为工作流上下文中的一项重要任务,许多当前的资源分配操作仍然是手动执行的,这非常耗时。本文提出了一种数据挖掘方法来解决资源分配问题(RAP)并提高工作流资源管理的生产率。具体来说,使用类似Apriori的算法从事件日志中查找频繁模式,并根据预定义的资源分配约束条件生成关联规则。随后,使用名为提升的相关度量来注释负相关的资源分配规则以进行资源保留。最后,使用置信度度量作为资源分配规则对规则进行排序。使用C4.5,SVM,ID3,朴素贝叶斯和所提出的方法进行了比较实验,结果表明所提出的方法在准确性和候选者方面均有效资源建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号